Propiedades del Vapor de Agua (Humedad)
 
La humedad es un término utilizado para describir la presencia de vapor de agua en el aire, ya sea a la intemperie, o dentro de un espacio. Nuevamente, hacemos énfasis en que la humedad está  "en el aire", solamente en el sentido de que los dos, aire y vapor de agua, existen juntos en un espacio dado al mismo tiempo.
 
Por costumbre común, decimos que el aire contiene humedad, y es conveniente hacerlo así, en el entendido de que siempre recordemos que es meramente una manera de hablar, y que en realidad, los dos son independientes uno del otro, y que no responden de la misma manera a los cambios de condiciones, especialmente a los cambios de temperatura.
 
Las palabras "vapor" y "gas", comúnmente las empleamos para referirnos a lo mismo; pero en realidad, un gas es un vapor altamente sobrecalentado, muy lejos de su temperatura de saturación, como el aire. Un vapor está en sus condiciones de saturación o no muy lejos de ellas, como el vapor de agua. Así pues, el vapor de agua o "humedad" en un espacio, puede estar en una condición de saturación o ligeramente arriba de ella. Si lo enfriamos unos cuantos grados, hacemos que se condense, y si le aplicamos calor, lo sobrecalentamos.
 
Como ya sabemos, dos terceras partes de la superficie de la tierra están cubiertas por agua: océanos, lagos y ríos, de las cuales se desprende el vapor de agua. Las nubes, también producto de esta evaporación, contribuyen a la humedad del ambiente al condensarse y precipitarse en forma de lluvia o nieve.
 
Todo lo anterior es lo que sucede a la intemperie. Dentro de una casa, edificio o fábrica, el vapor de agua puede provenir de la cocina, baño, máquinas, personas, etc. Así pues, la cantidad de humedad en el aire en un lugar y tiempo determinados, puede variar considerablemente.
 
El vapor de agua es producido por el agua, a cualquier temperatura (aún por el hielo). El agua no tiene que estar en ebullición, aunque si lo está, el vapor de agua es producido con mayor rapidez.
 
El vapor ejerce una presión definida encima del agua, la cual es determinada solamente por la temperatura del agua misma, independientemente de si el agua está o no en ebullición o de si el espacio por encima del agua contiene aire. Tampoco la presión del aire ejerce efecto alguno sobre la presión del vapor.
 
Si el agua está a una temperatura de 4 o C, la presión del vapor de agua sobre la misma es de 0.81 kPa ó 0.1179 psia, la cual es una presión menor que la atmosférica (vacío). Si la temperatura del agua aumenta a 15 o C, la presión del vapor de agua sobre la misma, aumenta más del doble, es decir, a 1.70 kPa (0.2472 psia).
 
En la tabla 13.3, se muestran las propiedades del vapor de agua saturado. Los valores de la primer columna, son las temperaturas en grados centígrados.
 
Los valores de la segunda y tercer columna, son las presiones del vapor sobre el agua, correspondientes a las temperaturas de la primer columna; este vapor se conoce como "saturado", porque es todo el vapor de agua que puede contener ese espacio a esa temperatura. Tenga en cuenta que no hay diferencia, si hay o no aire en ese espacio; la presión del vapor de agua será la misma, ya que ésta depende totalmente de la temperatura del agua.
 
Tabla 13.3 Propiedades del vapor de agua saturado.
Tabla 13.3 Propiedades del vapor de agua saturado.
 
Cuando comúnmente nos referimos a la presión atmosférica o barométrica, estamos incluyendo la presión del aire y la presión del vapor de agua que éste contiene. La presión atmosférica "normal" a nivel del mar, es de 101.325 kPa o de 760 mm. de mercurio. Si la presión del vapor de agua en el aire a 15 o C es 1.70 kPa, entonces, la presión del aire seco sería 99.625 kPa (101.325 - 1.70); ya que, de acuerdo a la ley de Dalton, la presión total es la suma de las presiones parciales de los componentes: la del aire seco y la del vapor de agua.
 
En la cuarta columna de la tabla, tenemos los valores de volumen específico. Estos nos indican el volumen en m³, que ocupa un kilogramo de agua en forma de vapor saturado. 
 
Si tenemos un cuarto de 8 x 5 x 2.5 metros (100 m³) lleno de vapor de agua a 15 o C, dentro de éste habrá poco más de un kilogramo de vapor saturado; esto es, 100 m³ ÷ 77.97 m³/kg = 1.283 kg.
 
Otra manera de calcularlo es utilizando el valor de la densidad. En la quinta columna tenemos los valores de la densidad en kg/m³; así que, el peso de 100 m³ de vapor saturado a 15 o C es de 1.283 kg (100 m³ x 0.01283 kg/m³). Como ya sabemos, el volumen específico es la inversa de la densidad, y viceversa.
 
En las sexta y séptima columnas, tenemos el peso del vapor de agua en dos unidades: en gramos por metro cúbico (g/m³) en el sistema internacional, y en "granos" por pie cúbico (granos/pie³) en el sistema inglés. La cantidad de vapor de agua que contiene el aire, es tan pequeña, que para fines prácticos, se utilizan gramos en lugar de kilogramos o "granos" en lugar de libras. El "grano" (grain) es una unidad comúnmente utilizada para cálculos psicrométricos en aire acondicionado. Es una unidad tan pequeña, que se requieren 15,415 granos para formar un kilogramo. Para fines prácticos, se considera que una libra contiene 7,000 granos. Para visualizarlo mejor, un grano es casi del tamaño de una "gotita" de agua. Así que, en el espacio de 100 m³ del cuarto de nuestro ejemplo, habrá 1,283 gramos de agua (100 m³ x 0.01283 kg/m³ x 1,000), lo que equivale a 12.83 gramos por m³, tal como se indica en la tabla. La densidad es igual a peso por volumen, así que, podríamos decir que el vapor de agua tiene una densidad 12.83 g/m³ ó 0.01283 kg/m³.
 
Para que el vapor de agua dentro del cuarto se mantenga saturado a 15 o C, como suponemos que lo hace, el espacio completo de 100 m³ en el cuarto, tendría que permanecer a 15 o C. Si hubiese aire en el cuarto como sería lo normal, éste también tendría que estar a 15 o C.
 
Obviamente, hay 100 m³ de aire en el cuarto, igual que hay 100 m³ de vapor de agua. Con una presión total de 101.3 kPa, encontramos que la presión del aire es solamente 99.6 kPa (101.3 - 1.70).
 
En la tabla 13.1, se tiene el volumen específico para el aire seco, pero basado en una presión de 101.3 kPa; mientras que el aire en el cuarto de nuestro ejemplo, está a 99.6 kPa. Por lo tanto, el aire del cuarto está menos denso, ya que está a menor presión, y consecuentemente, tendrá un volumen específico mayor que el mostrado en la columna 2 de la tabla 13.1.
 
De acuerdo a la ley de Boyle, sabemos que el volumen de un gas varía inversamente con la presión, si la temperatura permanece constante, lo que en este caso es cierto. Vemos que el volumen del aire seco a 15 o C es 0.8159 m³/kg a la presión de 101.3 kPa; así que, su volumen a la presión de 99.6 kPa será:
 
V/0.8159 = 101.3/99.6
 
V = 0.8298 m³ a la presión de 99.6 kPa.
 
Puesto que hay 100 m³ de aire en el cuarto, el peso del aire seco en el cuarto es de 120.51 kg (100 ÷ 0.8298). Así, el aire es menos denso a la presión parcial de 99.6 kPa que si no hubiera vapor de agua mezclado con éste. Como vemos en la tabla 13.1, la densidad del aire seco a 15 o C es 1.2256 kg/m³, y la presión de 101.3 kPa; así que, 100 m³ de aire, deberían pesar 122.56 kg (100 x 1.2256). Sin embargo, como ya vimos, los 100 m³ de aire saturado de humedad, pesan sólo 120.51 kg. Aún sumándole el peso del vapor de agua (120.51 + 1.283 = 121.793 kg), el aire húmedo es más ligero que el aire seco.